

Notice of the Final Oral Examination
for the Degree of Doctor of Philosophy

of

AHMAD LASHGAR

MSc (University of Tehran, 2012)
BSc (Jundi Shapor University of Technology, 2010)

“Addressing Software-Managed Cache Development Effort in
GPGPUs”

Department of Electrical and Computer Engineering

Tuesday, August 8, 2017
10:00 A.M.

Engineering & Coomputer Science Building
Room 468

Supervisory Committee:
Dr. Nikitas J. Dimopoulos, Department of Electrical and Computer Engineering, University of Victoria

(Supervisor)
Dr. Mihai Sima, Department of Electrical and Computer Engineering, UVic (Member)

Dr. Alex Thomo, Department of Computer Science, UVic (Outside Member)

External Examiner:
Dr. Xipeng Shen, Department of Computer Science, North Carolina State University

Chair of Oral Examination:

Dr. Neil Burford, Department of Chemistry, UVic

Dr. David Capson, Dean, Faculty of Graduate Studies

Abstract

GPU Computing promises very high performance per watt for highly-parallelizable workloads. Nowadays,

there are various programming models developed to utilize the computational power of GPGPUs. Low-

level programming models provide full control over GPU resources and allow programmers to achieve

peak performance of the chip. In contrast, high-level programming models hide GPU-specific

programming details and allow programmers to mainly express parallelism. Later, the compiler parses the

parallelization notes and translates them to low-level programming models. This saves tremendous

development effort and improves productivity, often achieved at the cost of sacrificing performance. In this

dissertation, we investigate the limitations of high-level programming models in achieving a performance

near to low-level models. Specifically, we study the performance and productivity gap between high-level

OpenACC and low-level CUDA programming models and aim at reducing the performance gap, while

maintaining the productivity advantages. We start this study by developing our in-house OpenACC

compiler. Our compiler, called IPMACC, translates OpenACC for C to CUDA and uses the system

compile to generate GPU binaries. We develop various micro-benchmarks to understand GPU structure

and implement a more efficient OpenACC compiler. By using IPMACC, we evaluate the performance and

productivity gap between a wide set of OpenACC and CUDA kernels. From our findings, we conclude that

one of the major reasons behind the big performance gap between OpenACC and CUDA is CUDAs

flexibility in exploiting the GPU software-managed cache. Identifying this key benefit in low-level CUDA,

we follow three effective paths in utilizing software-managed cache similar to CUDA, but at a lower

development effort (e.g. using OpenACC instead). In the first path, we explore the possibility of employing

existing OpenACC directives in utilizing software-managed cache. Specifically, the cache directive is

devised in OpenACC API standard to allow the use of software-managed cache in GPUs. We introduce

an efficient implementation of OpenACC cache directive that performs very close to CUDA. However, we

show that the use of the cache directive is limited and the directive may not offer the full-functionality

associated with the software-managed cache, as existing in CUDA. In the second path, we build on our

observation on the limitations of the cache directive and propose a new OpenACC directive, called the

few directive, to address the shortcomings of the cache directive, while maintaining OpenACC productivity

advantages. We show that the few directive overcomes the cache directive limitations and narrows down

the performance gap between CUDA and OpenACC significantly. In the third path, we propose fully-

automated hardware/- software approach, called TELEPORT, for software-managed cache programming.

On the software side, TELEPORT statically analyzes CUDA kernels and identifies opportunities in utilizing

the software-managed cache. The required information is passed to the GPU via API calls. Based on this

information, on the hardware side, TELEPORT prefetches the data to the software-managed cache at

runtime. We show that TELEPORT can improve performance by 32% on average, while lowering the

development effort by 2.5X, compared to hand-written CUDA equivalent.

